If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+20X-270=0
a = 1; b = 20; c = -270;
Δ = b2-4ac
Δ = 202-4·1·(-270)
Δ = 1480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1480}=\sqrt{4*370}=\sqrt{4}*\sqrt{370}=2\sqrt{370}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{370}}{2*1}=\frac{-20-2\sqrt{370}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{370}}{2*1}=\frac{-20+2\sqrt{370}}{2} $
| 3x+4-7x=8+x | | 6x-10+2x+18=180 | | 3x+4-7x=8 | | x-12x-9=9-11x | | 9=u÷2 | | ^2+7x-1110=0 | | 8x-4=24+3+(2x-10) | | v÷4=7 | | -4p–4=16 | | 4t^2=t+6 | | 3(2y+2)^2-(48)=0 | | 7.5x=142 | | -11+x=x+13 | | 12/40=b/10 | | 3y=+6y | | (2x+20)+(3x-10)=180 | | 7-4x-3=-x+9 | | 5+9y=-7-8y | | x^2+6x+7=0. | | 16x-4^2=0 | | 5(3m-6)=3(4m+2) | | X=13x-9x | | 3m+2(m-3)=19 | | 13x-9x=9x-13x | | -0.5(1-2x)+x=0.75x+2 | | 8y+8=4y | | 8x-34=7 | | 3(4−13x)=−2x−10+x | | 67=6x+19 | | -3(c-5)=3×+9 | | 83n=913n= | | 17b=153b= |